
DIABETIC RETINOPATHY DETECTION

Introduction:

Diabetic Retinopathy is an illness which occurs due to increased insulin level in the body, as a

consequence of Diabetes, and is characterized by loss of sight. Diabetes is incurable, so its effect can

only be minimized by early detection. Different stages of Diabetic Retinopathy can be detected by

analyzing retinal photographs. The purpose of this project is to build a Convolutional Neural Network

for the classification of levels of severity of DR based on the fundus images based on the dataset

provided by Simplilearn as part of the Advanced Deep Learning curriculum. Due to the advancement

of Artificial Intelligence, there have been many attempts to perform this task, present in the

literature on public datasets. In this project, I tried to replicate some of these models and then build

a CNN model from scratch, combining some of the attributes as well as figuring out solutions to the

problem faced, especially to that of data imbalance.

Preprocessing:

The dataset consists of 2 parts. One, the retinal images, and second, a csv file mapping image names

to the level of illness. Following tasks were performed as part of preprocessing:

1. Image Cropping: The images were rectangular in shape, where the retinal part was placed on

a black background. Images are cropped such that retinal image is centralized and black

portion of image is even out from every side. This introduces a similarity in the region under

investigation hence improving the efficiency and accuracy. [1]

2. Histogram Equalization: Histogram Equalization increases contrast in images by detecting

the distribution of pixel densities in an image and plotting these pixel densities on a

histogram. The distribution of this histogram is then analyzed and if there are ranges of pixel

brightnesses that aren’t currently being utilized, the histogram is then “stretched” to cover

those ranges, and then is “back projected” onto the image to increase the overall contrast of

the image. [2] Since retina image consists of various objects like illuminated retina, nerve

fibers, blood vessels and other deformities, hence contrast between different objects is

essential. Histogram equalization provides the necessary contrast between illuminated

retina and other objects hence making distinction between different objects easier to

detect. [1]

3. Image Resizing: The images were of high resolution and therefore of significant memory size.

The images were therefore resized to 512x512 which retained important features but also

reduces the dataset size to something the machine can handle.

4. Balancing the Dataset: The original dataset is divided into 5 classes of DR, with following

class distributions

class frequency

0 1016

2 230

1 113

4 36

3 32

Here class 0 represents Healthy retina, where 4 represents Proliferative DR. As can be

observed, the dataset is highly imbalanced with 71.2 percent of examples belonging to class

0 or healthy images, while only 2.2 percent of examples belonging to class 3 and 2.5 percent

belonging to class 4. This imbalance posed a serious challenge to the ability of the

classification algorithms to correctly identify the images with serious Retinopathy as the

model consistently attained a local minima at 71.2% accuracy despite different architectures,

optimizers and tuning these didn’t affect the model accuracy. There were 3 options

available. One, penalizing the loss function to learn more from classes with poor

representation. Two, undersampling, and three, oversampling. The first modification

drastically reduced the model’s ability to learn and dipped model accuracy below par.

Undersampling, was not successful either as the minority classes were too less in absolute

numbers for the deep learning model to learn. Few different techniques were tried for

oversampling. Firstly, SMOTE (synthetic minority oversampling technique) was tried on the

images but it produced noisy graph and accuracy didn’t increase from 68%. Moreover, the

images generated were not good quality to add meaning to the model.

The second technique I tried to oversample was by downloading the APTOS dataset from

Kaggle, mixing the images belonging to different classes and then downsampling to make

the dataset balanced, but the validation accuracy didn’t improve from 53% and model lost

its capacity to learn. This was probably because the labels in this dataset didn’t match with

the labels in the provided dataset. More research needs to be done on why the two datasets

didn’t add up. Finally, I decided to augment the dataset, but instead of online

transformations as with Keras ImageDataGenerator, I decided to manually increase the size

of the dataset by applying specific transformations which were more suitable for the model

to learn – namely, 90 degrees rotation, 180 degrees rotation, vertical flip and shear with

angle -15. To avoid too many duplicates, class 3 and class 4 samples were combined into a

single class, and renamed as Severe DR. After applying all transformations, the dataset was

downsampled with the minimum count for all classes, making it 816 for each class. Following

table summarizes the transformations applied to different classes:

Original
classes

New classes Transformations Original
Count

Transformed
Count

Final
Count

0 No DR NONE 1016 1016 816

1 Mild DR Rotate 90,
vertical flip,
shear

113 896 816

2 Moderate DR Vertical flip,
shear

230 920 816

3 Severe DR Rotate 90, 180,
vertical flip,
shear

32 816 816

4 Severe DR 36

5. Train-Test Split and Class Segregation: As dataset was input through flow_from_directory of

Keras ImageDataGenerator, all the images which were present in the local directory needed

to be segregated into separate class folders as well as train and test folders. Labels were

present in the dataframe created from the csv file, which was then split into train-test arrays

using sklearn train_test_split and then using the file names from these dataframes, images

were moved into respective directories. Using similar logic, using the shutil utility, images in

both train and test folder were segregated according to the new class names. The dataframe

had already been updated during augmentation for transformed images.

Model Building:

Architecture: In the preprocessing step, all the images were resized to standard 512x512x3

pixels. The CNN model was built from scratch, and designed to be deep so that it learns complex

features. There are 9 convolutional blocks. In each block, the kernel size is fixed to be 3x3. 2x2

Strided convolutions along with maxpooling layers are used to downsample the feature map. In each

block except 5th and 7th block, batch normalization is applied. After the last convolutional block, the

network is flattened to one dimensional. Then 2 dense layers are added each with 1024 neurons. To

avoid the problem of overfitting, 0.5 dropout layers are added after each fully connected layer. To

further avoid overfitting, 0.2 dropout is added after the last convolutional layer.

Compilation and Training: Model was compiled with Stochastic gradient descent optimization

algorithm with a learning rate of 0.001. The loss function used was categorical cross-entropy. Model

was trained for 100 epochs initially and then 15 epochs to confirm convergence.

Results:

For the classification task, 3 metrics were chosen: 1. Accuracy, 2. Recall, 3. Precision and were

evaluated on the validation data. The following confusion matrix and classification report summarize

the model results:

Classification Report:

Confusion Matrix:

The model after balancing the data performed better than with imbalanced data, which produced an

accuracy of 71.2% which is just the proportion of the majority class.

Autoencoder Task:

The task was to see if the latent representation in the bottleneck of autoencoder forms as many

clusters as number of classes. To accomplish the task, first the images were converted to numpy

arrays, then flattened into a 2 dimensional array, compressed by T-SNE. The lower dimensional

representation was then plotted using matplotlib. The image array was also trained on an

Autoencoder model and we were interested in the latent representation of these images. The model

was trained 2 times. Once, on a 2 dimensional bottleneck with full dataset, and again on a 3

dimensional bottleneck with undersampled but balanced dataset. Then the latent representation

was plotted using matplotlib. No clusters were observed.

Conclusion:

The imbalance of the dataset made it hard to get good classification accuracy and there was no

other solution other than combining the two minority classes into one and then manually

augmenting the images to increase the size of the dataset. Due to lack of time and resources,

memory management on disk was less than ideal and I ended up creating multiple folders of the

dataset to perform separate tasks. Histogram Equalization could’ve been made a part of a custom

ImageDataGenerator. Hopefully, in future, we’d able to use GANs to generate a more balanced

dataset, but due to lack of time and resources, that couldn’t be experimented with. Also, transfer

learning could’ve been applied to get better results, but due to lack of time and resources, that

couldn’t be experimented with either.

References:

[1] https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233514

[2] https://towardsdatascience.com/image-augmentation-for-deep-learning-using-keras-and-

histogram-equalization-9329f6ae5085

[3] https://www.sciencedirect.com/science/article/pii/S1877050916311929?via%3Dihub

[4] https://www.sciencedirect.com/science/article/abs/pii/S0045790618334190?via%3Dihub

[5] https://ieeexplore.ieee.org/document/8701231

https://towardsdatascience.com/image-augmentation-for-deep-learning-using-keras-and-histogram-equalization-9329f6ae5085
https://towardsdatascience.com/image-augmentation-for-deep-learning-using-keras-and-histogram-equalization-9329f6ae5085
https://www.sciencedirect.com/science/article/pii/S1877050916311929?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0045790618334190?via%3Dihub

